On using genetic algorithms for multimodal relevance optimisation in information retrieval

نویسندگان

  • M. Boughanem
  • C. Chrisment
  • L. Tamine
چکیده

This paper presents a genetic relevance optimisation process performed in an information retrieval system. The process uses genetic techniques for solving multimodal problems (niching) and query reformulation techniques commonly used in information retrieval. The niching technique allows the process to reach different relevance regions of the document space. Query reformulation techniques represent domain knowledge integrated in the genetic operators structure in order to improve the convergence conditions of the algorithm. Experimental analysis performed using a TREC sub-collection validates our

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On using genetic algorithms for multimodal relevance optimization in information retrieval

This paper presents a genetic relevance optimisation process performed in an information retrieval system. The process uses genetic techniques for solving multimodal problems (niching) and query reformulation techniques commonly used in information retrieval. The niching technique allows the process to reach different relevance regions of the document space. Query reformulation techniques repre...

متن کامل

Optimisation de la pertinence dans un SRI: Un problème multi-modal approché sous l'angle de la génétique

This paper presents a genetic relevance optimisation process performed in an information retrieval system. The process uses both genetic technique for solving multimodal problems witch is namely niching, and query reformulation techniques commonly used in information retrieval. Niching technique allows the process to reach different relevance regions of the document space. Query reformulation t...

متن کامل

Applying Heuristics to Improve A Genetic Query Optimisation Process in Information Retrieval

This work presents a genetic approach for query optimisation in information retrieval. The proposed GA is improved y heuristics in order to solve the relevance multimodality problem and adapt the genetic exploration process to the information retrieval task. Experiments with AP documents and queries issued from TREC show the effectiveness of our GA model

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

A Probabilistic Framework for Multimodal Retrieval using Integrative Indian Buffet Process

We propose a multimodal retrieval procedure based on latent feature models. The procedure consists of a Bayesian nonparametric framework for learning underlying semantically meaningful abstract features in a multimodal dataset, a probabilistic retrieval model that allows cross-modal queries and an extension model for relevance feedback. Experiments on two multimodal datasets, PASCAL-Sentence an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002